1. Basic operations in algorithm

An algorithm to solve a particular task employs some set of basic operations. When we estimate the amount of work done by an algorithm we usually do not consider all the steps such as e.g. initializing certain variables. Generally, the total number of steps is roughly proportional to the number of the basic operations. Thus, we are concerned mainly with the basic operations - how many times the basic operations have to be performed depending on the size of input.

Typical basic operations for some problems are the following:

<table>
<thead>
<tr>
<th>Problem</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Find x in an array</td>
<td>Comparison of x with an entry in the array</td>
</tr>
<tr>
<td>Multiplying two matrices with real entries</td>
<td>Multiplication of two real numbers</td>
</tr>
<tr>
<td>Sort an array of numbers</td>
<td>Comparison of two array entries plus moving elements in the array</td>
</tr>
<tr>
<td>Traverse a tree</td>
<td>Traverse an edge</td>
</tr>
</tbody>
</table>

The work done by an algorithm, i.e. its complexity, is determined by the number of the basic operations necessary to solve the problem.

Note: The complexity of a program that implements an algorithm is roughly the same, but not exactly the same as the complexity of the algorithm. Here we are talking about algorithms independent on any particular implementation - programming language or computer.

2. Size of input

Some algorithms are not dependent on the size of the input - the number of the operations they perform is fixed. Other algorithms depend on the size of the input, and these are the algorithms that might cause problems. Before implementing such an algorithm, we have to be sure that the algorithm will finish the job in reasonable time.

What is size of input? We need to choose some reasonable measure of size. Here are some examples:

<table>
<thead>
<tr>
<th>Problem</th>
<th>Size of input</th>
</tr>
</thead>
<tbody>
<tr>
<td>Find x in an array</td>
<td>The number of the elements in the array</td>
</tr>
<tr>
<td>Multiply two matrices</td>
<td>The dimensions of the matrices</td>
</tr>
</tbody>
</table>
Sort an array | The number of elements in the array
---|---
Traverse a binary tree | The number of nodes
Solve a system of linear equations | The number of equations, or the number of the unknowns, or both

Counting the number of operations

The core of the algorithm analysis: to find out how the number of the basic operations depends on the size of the input.

A. In our calculation we will use the following rules to manipulate Big-Oh expressions:

Let $T_1(N)$ and $T_2(N)$ be the number of operations necessary to run two program segments respectively, and let $T_1 = O(g_1(N))$, $T_2 = O(g_2(N))$.

Then:

- $T_1(N) + T_2(N) = \max(O(g_1(N)), O(g_2(N)))$

where $\max(O(g_1(N)), O(g_2(N)))$ is determined in the following way:

- If $g_1(N) = O(g_2(N))$, then $\max(O(g_1(N)), O(g_2(N))) = O(g_2(N))$
- If $g_2(N) = O(g_1(N))$, then $\max(O(g_1(N)), O(g_2(N))) = O(g_1(N))$

Example: $\max(O(n^2), O(n^3)) = O(n^3)$.

- $T_1(N) \times T_2(N) = O(g_1(N) \times g_2(N))$

B. There are four rules to count the operations:

Rule 1: for loops

The running time of a *for* loop is at most the running time of the statements inside the loop times the number of iterations.

```c
for( i = 0; i < n; i++)
sum = sum + i;
```

a. Find the running time of statements when executed only once:
The statements in the loop heading have fixed number of operations, hence they have constant running time $O(1)$ when executed only once.

The statement in the loop body has fixed number of operations, hence it has a constant running time when executed only once.

b. Find how many times each statement is executed.

$$\text{for(i = 0; i < n; i++) // i = 0; executed only once: } O(1)$$
$$\text{// i < n; n + 1 times } O(n)$$
$$\text{// i++ n times } O(n)$$
$$\text{// total time of the loop heading: } O(1) + O(n) + O(n) = O(n)$$

$$\text{sum = sum + i; // executed n times, } O(n)$$

The loop heading plus the loop body will give: $O(n) + O(n) = O(n)$.

Loop running time is: $O(n)$

Hence we can say:
If the size of the loop is n (loop variable runs from 0 or some fixed constant, to n) and the body has constant running time (no nested loops) then the time is $O(n)$

Rule 2: Nested loops

The total running time is the running time of the inside statements times the product of the sizes of all the loops

$$\text{sum = 0; }$$
$$\text{for(i = 0; i < n; i++) }$$
$$\text{for(j = 0; j < n; j++) }$$

$$\text{sum++; }$$

Applying Rule 1 for the nested loop (the 'j' loop) we get $O(n)$ for the body of the outer loop.

The outer loop runs n times, therefore the total time for the nested loops will be $O(n) * O(n) = O(n^2) = O(n^2)$.

What happens if the inner loop does not start from 0?

$$\text{sum = 0; }$$
$$\text{for(i = 0; i < n; i++) }$$
$$\text{for(j = i; j < n; j++) }$$

$$\text{sum++; }$$
Here, the number of the times the inner loop is executed depends on the value of i:

\[
\begin{array}{c|c}
 i & \text{inner loop runs} \\
 \hline
 0 & n \\
 1 & (n-1) \\
 2 & (n-2) \\
 \vdots \\
 n-2 & 2 \\
 n-1 & 1
\end{array}
\]

Adding the right column, we get: \((1 + 2 + \ldots + n) = n(n+1)/2 = O(n^2)\)

General rule for loops:

Running time is the product of the size of the loops times the running time of the body.

Example:

```c
sum = 0;
for( i = 0; i < n; i++)
for( j = 0; j < 2n; j++)
    sum++;
```

We have one operation inside the loops, and the product of the sizes is \(2n^2\).
Hence the running time is \(O(2n^2) = O(n^2)\)

Rule 3: Consecutive program fragments

The total running time is the maximum of the running time of the individual fragments

```c
sum = 0;
for( i = 0; i < n; i++)
    sum = sum + i;
sum = 0;
for( i = 0; i < n; i++)
    for( j = 0; j < 2n; j++)
        sum++;;
```

The first loop runs in \(O(n)\) time, the second \(- O(n^2)\) time, the maximum is \(O(n^2)\)

Rule 4: If statement
if Condition
 S1;
else
 S2;

The running time is the maximum of the running times of S1 and S2.

3. Examples

 for (i = 0; i < n; i++)
 if (a[i] == x) return 1; // 1 means succeed
 return -1; // -1 means failure, the element is not found

The basic operation in this problem is comparison, so we are interested in how the number of comparisons depends on n.

Here we have a loop that runs at most n times:

If the element is not there, the algorithm needs n comparisons.
If the element is at the end, we need n comparisons.
If the element is somewhere in between, we need less than n comparisons.

In the worst case (element not there, or located at the end), we have n comparisons to make.
Hence the number of operations is \(O(n) \).

To find what the average case is, we have to consider the possible cases:

- element is at the first position: 1 comparison
- element is at the second position: 2 comparisons
- etc.

We compute the sum of the comparisons for the possible cases and then divide by the number of the cases, assuming that all cases are equally likely to happen:

\[1 + 2 + \ldots + n = \frac{n(n+1)}{2} \]

Thus in the average case the number of comparisons would be \(\frac{n+1}{2} = O(n) \).

Generally, the algorithm for finding an element in an unsorted array needs \(O(n) \) operations.

2. Search in a table n x m

 for (i = 0; i < n; i++)
 for (j = 0; j < m; j++)
if (a[i][j] == x) return 1; // 1 means succeed
return -1; // -1 means failure - the element is not found.

Here the inner loop runs at most m times and it is located in another loop that runs at most n times, so in total there would be at most nm operations. Strictly speaking, nm is less than \(n^2 \) when \(m < n \). However, for very large values of n and m the difference is negligible, the amount of work done is roughly the same. Thus we can say that the complexity here is \(O(n^2) \).

3. Finding the greatest element in an array

\[
\text{amax} = a[0]; \\
\text{for } (i = 1; i < n; i++) \\
\text{if } (a[i] > \text{amax}) \text{ amax} = a[i];
\]

Here the number of operations is always \(n-1 \). The amount of work depends on the size of the input, but does not depend on the particular values.

The running time is \(O(n) \), we disregard "-1" because the difference for large n is negligible.

Learning goals

1. Know how the size of input is measured for certain basic problems, discussed above.
2. Given a program fragment (loop, nested loops, if statements), be able to estimate the number of operations using Big-Oh notation.

Exam-like questions and problems with

1. Give an analysis of the running time for the following loops, using the Big-Oh notation:

 Problem 1

 \[
 \text{sum} = 0; \\
 \text{for} (i = 0; i < n; i++) \\
 \text{sum}++;\]

 Problem 2
```c
sum = 0;
for( i = 0; i < n; i++)
    for( j = 0; j < n; j++)
        sum++;

Problem 3
sum = 0;
for( i = 0; i < n; i++)
    for( j = 0; j < n * n; j++)
        sum++;

Problem 4
sum = 0;
for( i = 0; i < n; i++)
    for( j = 0; j < i; j++)
        sum++;

Problem 5
sum = 0;
for( i = 0; i < n; i++)
    for( j = 0; j < i*i; j++)
        for( k = 0; k < j; k++)
            sum++;

Problem 6
sum = 0;
for( i = 0; i < n; i++)
    for( j = 0; j < i*i; j++)
        if (j % i ==0)
            for( k = 0; k < j; k++)
```
Problem 7

```plaintext
sum = 0;
for( i = 0; i < n; i++)
    sum++;
val = 1;
for( j = 0; j < n*n; j++)
    val = val * j;
```

Problem 8

```plaintext
sum = 0;
for( i = 0; i < n; i++)
    sum++;
for( j = 0; j < n*n; j++)
    compute_val(sum,j);
```

The complexity of the function $compute_val(x,y)$ is given to be $O(n \log n)$